首页> 外文OA文献 >Learning a Hierarchical Compositional Shape Vocabulary for Multi-class Object Representation
【2h】

Learning a Hierarchical Compositional Shape Vocabulary for Multi-class Object Representation

机译:学习多层次的分层组合形状词汇   对象表示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hierarchies allow feature sharing between objects at multiple levels ofrepresentation, can code exponential variability in a very compact way andenable fast inference. This makes them potentially suitable for learning andrecognizing a higher number of object classes. However, the success of thehierarchical approaches so far has been hindered by the use of hand-craftedfeatures or predetermined grouping rules. This paper presents a novel frameworkfor learning a hierarchical compositional shape vocabulary for representingmultiple object classes. The approach takes simple contour fragments and learnstheir frequent spatial configurations. These are recursively combined intoincreasingly more complex and class-specific shape compositions, each exertinga high degree of shape variability. At the top-level of the vocabulary, thecompositions are sufficiently large and complex to represent the whole shapesof the objects. We learn the vocabulary layer after layer, by graduallyincreasing the size of the window of analysis and reducing the spatialresolution at which the shape configurations are learned. The lower layers arelearned jointly on images of all classes, whereas the higher layers of thevocabulary are learned incrementally, by presenting the algorithm with oneobject class after another. The experimental results show that the learnedmulti-class object representation scales favorably with the number of objectclasses and achieves a state-of-the-art detection performance at both, fasterinference as well as shorter training times.
机译:层次结构允许在多个表示级别的对象之间共享特征,可以以非常紧凑的方式编码指数可变性并启用快速推断。这使得它们潜在地适合于学习和识别更多数量的对象类。但是,迄今为止,使用手工制作的功能或预定的分组规则阻碍了分层方法的成功。本文提出了一种新颖的框架,用于学习用于表示多个对象类别的分层组成形状词汇。该方法采用简单的轮廓片段并学习其频繁的空间配置。将这些递归组合为越来越复杂和特定于类别的形状组合,每个组合都具有高度的形状可变性。在词汇表的顶层,这些组合足够大且复杂,无法代表对象的整体形状。通过逐步增加分析窗口的大小并降低学习形状配置的空间分辨率,我们可以逐层学习词汇。在所有类别的图像上共同学习较低的层,而词汇层的较高层是通过逐个提出一个对象类别来逐步学习的。实验结果表明,学习到的多类对象表示与对象类的数量成比例地缩放,并且在更快的推理和更短的训练时间上都达到了最新的检测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号